Competition between α-actinin and Ca2+-Calmodulin Controls Surface Retention of the L-type Ca2+ Channel CaV1.2
نویسندگان
چکیده
Regulation of neuronal excitability and cardiac excitation-contraction coupling requires the proper localization of L-type Ca²⁺ channels. We show that the actin-binding protein α-actinin binds to the C-terminal surface targeting motif of α11.2, the central pore-forming Ca(V)1.2 subunit, in order to foster its surface expression. Disruption of α-actinin function by dominant-negative or small hairpin RNA constructs reduces Ca(V)1.2 surface localization in human embryonic kidney 293 and neuronal cultures and dendritic spine localization in neurons. We demonstrate that calmodulin displaces α-actinin from their shared binding site on α11.2 upon Ca²⁺ influx through L-type channels, but not through NMDAR, thereby triggering loss of Ca(V)1.2 from spines. Coexpression of a Ca²⁺-binding-deficient calmodulin mutant does not affect basal Ca(V)1.2 surface expression but inhibits its internalization upon Ca²⁺ influx. We conclude that α-actinin stabilizes Ca(V)1.2 at the plasma membrane and that its displacement by Ca²⁺-calmodulin triggers Ca²⁺-induced endocytosis of Ca(V)1.2, thus providing an important negative feedback mechanism for Ca²⁺ influx.
منابع مشابه
AKAP79/150 Anchoring of Calcineurin Controls Neuronal L-Type Ca2+ Channel Activity and Nuclear Signaling
Neuronal L-type calcium channels contribute to dendritic excitability and activity-dependent changes in gene expression that influence synaptic strength. Phosphorylation-mediated enhancement of L-type channels containing the CaV1.2 pore-forming subunit is promoted by A-kinase anchoring proteins (AKAPs) that target cAMP-dependent protein kinase (PKA) to the channel. Although PKA increases L-type...
متن کاملNpgrj_nsmb_1027 1..8
Changes in activity-dependent calcium flux through voltage-gated calcium channels (CaVs) drive two self-regulatory calciumdependent feedback processes that require interaction between Ca2+/calmodulin (Ca2+/CaM) and a CaV channel consensus isoleucine-glutamine (IQ) motif: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF). Here, we report the high-resolution structure ...
متن کاملNpgrj_nsmb_1027 1108..1115
Changes in activity-dependent calcium flux through voltage-gated calcium channels (CaVs) drive two self-regulatory calciumdependent feedback processes that require interaction between Ca2+/calmodulin (Ca2+/CaM) and a CaV channel consensus isoleucine-glutamine (IQ) motif: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF). Here, we report the high-resolution structure ...
متن کاملCa1.2 and CaV1.3 neuronal L-type calcium channels: differential targeting and signaling to pCREB.
Neurons express multiple types of voltage-gated calcium (Ca2+) channels. Two subtypes of neuronal L-type Ca2+ channels are encoded by CaV1.2 and CaV1.3 pore-forming subunits. To compare targeting of CaV1.2 and CaV1.3 L-type Ca2+ channels, we transfected rat hippocampal neuronal cultures with surface-epitope-tagged sHA-CaV1.2 or sHA-CaV1.3a constructs and found that: (i) both sHA-CaV1.2 and sHA-...
متن کاملThe Tumor Suppressor eIF3e Mediates Calcium-Dependent Internalization of the L-Type Calcium Channel CaV1.2
Voltage-gated calcium channels (VGCCs) convert electrical activity into calcium (Ca2+) signals that regulate cellular excitability, differentiation, and connectivity. The magnitude and kinetics of Ca2+ signals depend on the number of VGCCs at the plasma membrane, but little is known about the regulation of VGCC surface expression. We report that electrical activity causes internalization of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 78 شماره
صفحات -
تاریخ انتشار 2013